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Goals of this chapter
Combining conduit junctions are a frequent standard or 
special manholes

 Many concepts exist, which one is adequate?
 How are they designed?
 What is the flow characteristics?

Two types following the inflow characteristics: 
• Sub-critical flow design
• Super-critical flow design

8. Junction manhole
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8.1 Introduction
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Goals of junctions
• Combine two flows with a minimum energy loss (for sub-critical approach 

flow in “flat” topography)
• Combine two flows with a maximum discharge capacity (for super-critical 

approach flow in “steep” topography)
• Avoid phenomena limiting the capacity (for example shockwaves causing 

choking)

 For small conduit diameter and sub-critical approach flow  standard 
manhole without design

 For large D>0.8 m or super-critical approach flow  special manhole

8.1 Introduction
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8.1 Introduction

Sub-critical approach flow conditions
• Basic hydraulics of junctions often refers to pressurized flow 
• Similar flow features for open channel and pressurized flow for Fu<0.7
• Friction losses are relevant for the hydraulic features, flow depths are 

computed for design purposes
• Friction losses are compensated by the bottom slope (in manhole only)

Super-critical approach flow conditions 
• Merging two super-critical flows is almost impossible… 
• Shock waves at bend and where the flow merges occur, resulting in

flow choking (swell) at the end of the junction
• The discharge capacity is the limiting issue considered for design purposes
• Often big conduit diameters necessary, together with extension elements
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8.1 Introduction

Left: Sub-critical flow conditions
Right: Super-critical flow conditions

Same geometry, same partial filling ratio

Dimitri Simos, 2012
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8.1 Introduction

Sub-critical flow conditions: standard design (Bernoulli)
(SIA, ATV)
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8.1 Introduction

Super-critical flow conditions: 
Hager & Gisonni design
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8.2 Sub-critical approach flow
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Sub-critical flow conditions … hydraulic computation against flow direction

Bases:
• Manhole geometry is known (simplified ? Small changes are neglected)
• Downstream uniform flow (U) conditions QU, UU, hU are known 

(computation direction against stream for sub-critical conditions)
• Specify QO and QZ in the two upstream branches (O as main branch, and L

as lateral branch)

Bernoulli (with local and streamwise losses):
• Downstream U to main branch O Ho+z=Hu+o[VU

2/2g]+hf
• Downstream U to lateral branch L Hz+z=Hu+z[VU

2/2g]+hf

With:
• H as specific energy head (relative to the bottom)
• z as bottom elevation difference
• V as flow velocity
• hf as friction losses head

8.2 Sub-critical approach flow
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Assumption (in the Bernoulli equation):
• z und hf are small and compensate each other → remove
• For F<1 is V2/2g<h → relate to AU: VO=QO/AU und VZ=QZ/AU

Flow depths (at the entrance to the junction) of the two upstream branches 
result as

• Main branch

• Lateral branch

Use ho and hz as start value to derive the backwater curve (computation in the 
upstream direction) towards uniform flow in O and L

8.2 Sub-critical approach flow
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Junction with various geometrical parameters exist…
• The local loss coefficients o and z are required  literature!
• Partially rather pronounced local energy losses, not to be ignored…
• Loss coefficients are derived for pressurized flow, they may be adapted to free 

surface flows if FU<0.7

Again: reference velocity is VU as the others could be zero

8.2 Sub-critical approach flow
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Local loss coefficients (I)

• Main branch straight with δO=0° and n=1
• Lateral branch with δZ=45°
• Sharp edges 

8.2 Sub-critical approach flow
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• Negative loss coefficients 
for main branch!

• Main flow is aspired by 
lateral flow

• “energy gain” for main 
branch

• Nevertheless, Head loss>0 
(Junction = Energy loss)
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Local loss coefficients (II): Rounded edges at lateral branch reduce losses

• Main branch straight 
with δO=0° and n=1

• Lateral branch with 
δZ=90°

• Rounded edges
• RZ=bZ

• Main branch straight
δO=0°

• Lateral branch with
δZ=90°

• m=n=1
• Rounded edges
• RZ/bZ variable

8.2 Sub-critical approach flow
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Dividing junction

Main branch: Index d
Lateral branch: Index a
Inflow branch: Index o

• Main branch straight δO=0°
• m=n=1
• Sharp edges

8.2 Sub-critical approach flow
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Only for sub-critical flow conditions!

Bottom offset at lateral branch
To avoid backwater effect in lateral branch, only rarely used

(a) submerged, (b) plunging jet, (c) free jet, and (d) impingement 
at opposite wall

8.2 Sub-critical approach flow
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8.3 Super-critical flow design
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Several phenomena of super-critical flow affect the design of junction 
manholes, mainly because of stagnant shock waves at
• abrupt wall deflection
• channel contraction
• channel bend
• standing waves

These phenomena are first characterized, then their impact on the junction 
manhole deign is explained

Flow disturbance  shock wave  failure of system

8.3 Super-critical flow design
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Shock waves due to abrupt wall deflection (I) (Hager 2010)

8.3 Super-critical flow design
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Shock waves due to abrupt wall deflection (II) (Hager 2010)

Shock wave characteristics

Normalization:
F1=V1/(gh1)1/2 und Ys=h2/h1

Shock number

Depth ratio

Shock angle

8.3 Super-critical flow design

121 SYs 

11 FS

1
106.11  Ss






22

Shock waves due to abrupt wall deflection (III) (Hager 2010)

Shock wave characteristics

Normalization:
F1=V1/(gh1)1/2 und Ys=h2/h1

Froude ratio

Maximum water depth along wall

8.3 Super-critical flow design
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Shock waves at conduit bend (Hager 2010)

Positive shock wave along external 
wall, negative shock wave along 
inner wall

Wave maxima at β, 2β, …

Bend number

Approximation of maximum/minimum wave height

Approximate location of maximum wave height

8.3 Super-critical flow design
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Shock waves at rectangular channel junction (I) (Hager 2010)

Shock waves
For one active channel only
(no discharge in the other channel)

Geometry
• Straight main branch
• Horizontal
• Sharp edges

Discharge scenarios
• Left: flow only in 

main channel
• Right: flow only in 

lateral channel

8.3 Super-critical flow design
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Shock waves at rectangular channel junction (II) (Hager 2010)

Both channels active: Shock wave B is highest and relevant for design (Hager 1999)

8.3 Super-critical flow design
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Shock waves at rectangular channel junction (III) (Hager 2010)

Stagnant waves (limit condition): one branch sub-critical, one super-critical.
Hydraulic jump at transition

8.3 Super-critical flow design
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Shock waves at conduit junction (I) (Hager 2010)

«Old» concept for super-critical flow: 
Cover plate (up to 45°)

• Left case possible, right case unrealistic 
(choking)

• Only few experience, do preferably not 
apply

• Floating sediments get trapped at plate; 
they initiate choking (photo: floating objects blocked at valve)

8.3 Super-critical flow design
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Shock waves at conduit junction (II) (Hager 2010)

«Old» concept for super-critical flow: Cover plate (up to 45°)

Flow pattern
 Top: without cover plate
 Bottom: with cover plate

Photos for rectangular 
channel (Hager 1999)

8.3 Super-critical flow design
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Shock waves at conduit junction (III) (Hager 2010)

«Intermediate» concept for super-critical flow: Extension (after bend, lateral 
branch)

• R=3D
• Bench height 1.5D
• Maximum wave height at 35 to 55°,

so that 45° bend is most sensitive
• Extension of straight 2D section d/s 

of bend
• 90° bend: intermediate, straight 

section with length D

8.3 Super-critical flow design
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Shock waves at conduit junction (IV) (Hager and Gisonni 2005)

«Intermediate» concept for super-critical flow: Extensions (in bend and at 
manhole end)

1. For bend > 45°: intermediate straight 
extension with length D at 45°
upstream of junction point

2. Straight extension of 2D length
downstream junction point but 
upstream of manhole end

• R=3D
• Bench height 1.5D
• Over all extensions are L≈5D und B≈4D
• All conduits have same D

8.3 Super-critical flow design
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Shock waves at conduit junction (V) (Hager and Gisonni 2005)

«Intermediate» concept for super-critical flow : wave “B” is relevant for 
design

8.3 Super-critical flow design
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Shock waves at conduit junction (VI) (Hager and Gisonni 2005)

«Intermediate» concept for super-critical flow 

Advantages
• Simple
• Reduced choking due to “lower” shock waves  high discharge capacity
• No cover plate

Disadvantages
• D is constant in all three branches =  very rate in practice! (usually, 

downstream conduit requires larger D)
• Only for 45° or 90°
• Large manhole dimensions

8.3 Super-critical flow design
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Shock waves at conduit junction (VII) (Hager and Gisonni 2005)

«Intermediate» concept for super-critical flow applies for control manhole, 
bend manhole and junction manhole

Hager & Gisonni (2005) give the manhole capacity K (sum of discharges from 
both branches), using the capacity-Froude number and the limit partial filling 
ratio:

8.3 Super-critical flow design
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Shock waves at conduit junction (VIII) (Pfister et al. 2013,Crispino et al. 2019)

«New» concept for super-critical flow with variable D and θ

Systematical variation of Di, Fi, Yi and θ
• Compute uniform flow parameters at inflow branches
• Derive per inflow branch Di, Fi, Yi
• Derive the values

8.3 Super-critical flow design
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Shock waves at conduit junction (IX) (Pfister et al. 2013,Crispino et al. 2019)

«New» concept for super-critical flow 

8.3 Super-critical flow design
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Shock waves at conduit junction (X) (Pfister et al. 2013,Crispino et al. 2019)

«New» concept for super-critical flow 

Régimes d’écoulement :
1. torrentiel dans O et aucun débit 

dans L.
2. torrentiel dans O et fluvial L.
3. torrentiel dans les deux.
4. fluvial dans O et torrentiel dans L.
5. torrentiel dans L et aucun débit 

dans O.
6. (fluvial dans les deux=

«C» se réfère à l’étouffement
θ>45°?  θ=45° dans diagramme

8.3 Super-critical flow design
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Shock waves at conduit junction (XI) (Pfister et al. 2013,Crispino et al. 2019)

«New» concept for super-critical flow 

La capacité QC est le débit maximum qui peut s’écouler à travers d’une 
jonction. Elle est exprimée par PC

• Le débit effective QU=QO+QL est exprimé avec PU

• Pour le régime 3 (voir transparent précèdent)

• Taux de remplissage aval pour le régime 3

8.3 Super-critical flow design
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Example
Une branche latérale L est dirigée dans branche droite O.

θ=90°

QO=1.09 m3/s, DO=0.75 m, JSO=0.1
QL=0.78 m3/s, DL=0.75 m, JSL=0.04

DU=? m

8.3 Super-critical flow design
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A similar case in the physical model…

8.3 Super-critical flow design



40

8.3 Super-critical flow design

There are numerous junction types built, and they hardly follow theory…
(Stadt Zürich, Vereinigung und Entlastung in Regenbecken Werdinsel, Foto Tagesanzeiger 7.12.2018)
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8.4 Pro memoria
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1. Sub-critical flow: simple geometry, consider losses and flow depths
2. Super-critical flow: chocking because of show waves

Sub-critical flow
• Energy losses known
• Energy loss estimations are only valid for F<0.7 and for pressurized flow
• Nevertheless, these are used for all junctions
• Loss coefficient may be negative!
• Compute flow depth for individual branches
• Bottom offset to avoid backwater 

8.4 Pro memoria
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Super-critical flow
• Shockwaves with hydraulic jump
• Wave formation in bend
• Consider maximum wave height at junction
• Concept of cover plate
• Concept of Hager & Gisonni

Note: New and general design equation are developed by LCH these days.
• Pfister (2013). Séminaire VSA/EPFL Hydraulique des canalisations
• Pfister and Gisonni (2014). Head losses in junction manholes for free surface

flows in circular conduits. Journal of Hydraulic Engineering

Questions?

8.4 Pro memoria


